TFDP1

Kanazawa University research: Chromatin Accessibility: A new avenue for gene editing

Retrieved on: 
Friday, February 16, 2024

KANAZAWA, Japan, Feb. 16, 2024 /PRNewswire/ -- In a study recently published in Nature Genetics, researchers from Nano Life Science Institute (WPI-NanoLSI), Kanazawa University explore chromatin accessibility, i.e., endogenous access pathways to the genomic DNA, and its use as a tool for gene editing.

Key Points: 
  • KANAZAWA, Japan, Feb. 16, 2024 /PRNewswire/ -- In a study recently published in Nature Genetics, researchers from Nano Life Science Institute (WPI-NanoLSI), Kanazawa University explore chromatin accessibility, i.e., endogenous access pathways to the genomic DNA, and its use as a tool for gene editing.
  • This phenomenon known as 'chromatin accessibility' involves a privileged set of protein molecules, many of which are still unknown.
  • Now, researchers from Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, led by Yusuke Miyanari, have used advanced genetic screening methods to unravel chromatin accessibility and its pathways.
  • In this study the genes identified by CRISPR screening were subjected to ATAC-see to confirm their involvement with chromatin accessibility.

Kanazawa University research: Chromatin Accessibility: A new avenue for gene editing

Retrieved on: 
Friday, February 16, 2024

KANAZAWA, Japan, Feb. 16, 2024 /PRNewswire/ -- In a study recently published in Nature Genetics, researchers from Nano Life Science Institute (WPI-NanoLSI), Kanazawa University explore chromatin accessibility, i.e., endogenous access pathways to the genomic DNA, and its use as a tool for gene editing.

Key Points: 
  • KANAZAWA, Japan, Feb. 16, 2024 /PRNewswire/ -- In a study recently published in Nature Genetics, researchers from Nano Life Science Institute (WPI-NanoLSI), Kanazawa University explore chromatin accessibility, i.e., endogenous access pathways to the genomic DNA, and its use as a tool for gene editing.
  • This phenomenon known as 'chromatin accessibility' involves a privileged set of protein molecules, many of which are still unknown.
  • Now, researchers from Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, led by Yusuke Miyanari, have used advanced genetic screening methods to unravel chromatin accessibility and its pathways.
  • In this study the genes identified by CRISPR screening were subjected to ATAC-see to confirm their involvement with chromatin accessibility.